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Serie 2

Context: Galerkin approximation.

Theoretical Exercises: 1.–5.

Practical Exercise: 6.

Let VN andWN be two finite dimensional spaces with dim(VN) = N and dim(WN ) = P .
Let AN : VN → (WN )′ be a linear operator. Let fN be an element of (WN)′

Find uN ∈ VN , such that ANuN = fN . (1)

We introduce a basis BV = {p1
N , ..., p

N
N} (resp. BW = {q1

N , ..., q
P
N}) of VN (resp. WN ).

Finally, we consider the problem:

Find uN ∈ CN ANuN = fN , (2)

with 



AN =
(〈
ANp

i
N ; qjN

〉
WN

)P,N
j,i=1
∈ CP×N ,

fN =
(〈
f ; qjN

〉
WN

)P
j=1
∈ CP ,

uN =
N∑

i=1

uiN piN .

(3)

1. (a) Show that problem (1) is equivalent to problem (2).

(b) Prove that:

the problem (1) has generically (∀f ) one solution =⇒ N = P. (4)

Hint: Use that dim(Rg(AN)) + dim(Ker(AN )) = N .

2. We set N = P , VN = WN and BV = BW .

Compute the new Galerkin matrix AN and the right hand side vector f
N

for problem
(1) after a permutation of the basis vectors of BV .

Hint: Introduce a permutation matrix P.

Bitte wenden!



3. We set VN = WN and BV = BW . We denote by B2
V the basis obtained by scaling

the basis vectors of BV :

B2
V = (αiNp

i
N)Ni=1 with ∀i = 1, ..., N αiN ∈ R∗. (5)

Express A2
N and f2

N with respect to AN , fN , αiN , where A2
N and f2

N are the Galerkin
matrix associated to problem (1) and to the basis B2

V

4. The operator equation (1) is set in finite dimensional spaces. Hence, after choosing
bases for VN and (WN )′ it can be converted into a linear system of equations. Which
bases have to be chosen, such that we exactly end up with (2)?

5. We set N = P , and we suppose that AN is bijective:

For a fixed basis BW = (qiN)Ni=1 of WN , define a basis BV = (piN)Ni=1 of VN such
that:

uN =

N∑

i=1

〈
fN ; qiN

〉
piN (6)

where uN is the solution of problem (1). What is the Galerkin matrix AN associated
to BV and BW ?

6. Consider the bilinear form:




a : L2([0; 1])× L2([0; 1]) → IR

(u, v) 7→
∫ 1

0

u(x) v(x).
(7)

(a) Does this bilinear form satisfy the inf-sup condition in L2([0; 1])?

(b) We set:

VN = span(BV ) ⊂ L2([0; 1]) and WN = span(BW ) ⊂ W ⊂ L2([0; 1]), (8)

with:




BV =
{
pkN : [0; 1]→ IR, x 7→ xk

/
k = 0, ..., N − 1

}
,

BW =
{
qkN : [0; 1]→ IR, x 7→ I[ k

n
, k+1
n

](x)
/
k = 0, ..., N − 1

}
,

(9)

where II(x) = 1 if x ∈ I and 0 else.

Compute the Galerkin matrix AN .

(c) Write a MATLAB code which computes the inf-sup constant γN for some N ’s.

Siehe nächstes Blatt!



Tutorial: Thursday 10–11 HG E5, Starting time: Thursday, 3.10

Coordinators: Sébastien Tordeux, HG J16.1, tordeux@math.ethz.ch, Harish Kumar Kaus-
hik, HG G56, harish@math.ethz.ch

Testat requirement: 50% of the theoritical exercises and 50% practical exercises (MAT-
LAB) should be solved.

Appendix: Singular Value Decomposition (SVD):

Let A be an element of CN×N . We will show that there exist U ∈ CN×N unitary and
V ∈ CN×N unitary and D ∈ CN×N diagonal such that:

A = U D VH. (10)

First, we consider AAH ∈ CN×N . This is a symetric matrix. Therefore, there exist U ∈
CN×N unitary and D2 ∈ CN×N diagonal satisfying:

AAH = U D2 UH (11)

In other words, there exist N vectors ui and N scalars λi such that:

AAH ui = λi ui, for all i = 1, ..., N. (12)

where the ui’s are the columns of the matrix U and λi are the coefficients of the diagonal
matrix D2. The ui satisfies the orthogonal property:

UHU = I ⇐⇒ uHi uj = 1 if i = j and 0 else. (13)

We define the vi in the following way :

i ∈ I = {i ∈ N with 1 6 i 6 N and AH ui 6= 0}, vi =:
AH ui
‖AH ui‖

. (14)

Remarking that ∀i ∈ I:
{
‖AH ui‖2 = (AH ui; A

H ui) = (AAH ui; ui) = λi,

(AH ui; A
H uj) = (AH ui; A

H uj) = (AAH ui; uj) = λi (ui; uj),
(15)

leads to for all i and j in I:

vHi vj = 1 if i = j and 0 else. (16)

Bitte wenden!



By the Gram-Schmidt procedure, we complete the system of vectors (vi)i∈I so that the
completed version (vi)

N
i=1 keep the orthogonality property (16). By construction, one has:
√
λi vi = AH ui, ∀i = 1, ..., N. (17)

Now, we denote by V ∈ CN×N and D ∈ CN×N the matrices given by:

V = (v1|v2|...|vN) and D =
√

D2. (18)

The matrix V ∈ CN×N is unitary and the matrix D ∈ CN×N is diagonal with Di,i =
√
λi.

Finally, equations (16) and (17) lead to:

D = VHAH U =⇒ V D UH = AH =⇒ A = U D VH . (19)

We say that the
√
λi, i = 1, ..., N , are the singular values of the matrix A.

Matlab command:

[U,S,V] = svd(A) produces a diagonal matrix S, of the same
dimension as X and with nonnegative diagonal elements in
decreasing order, and unitary matrices U and V so that
A = U*S*V’.

S = svd(A) returns a vector containing the singular values.
Smin = svds(A,1,0) returns the smallest singular value.


