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Serie 2

Context: Galerkin approximation.
Theoretical Exercises: 1.-5.

Practical Exercise: 6.

Let Viy and Wy be two finite dimensional spaces with dim(Vy) = N and dim(Wy) = P.
Let Ay : Vy — (Wy)' be a linear operator. Let fy be an element of (W)’

Find uny € VN, such that ANUN = fN' (1)

We introduce a basis By = {pk;,...,pN} (resp. By = {qk, ..., ¢ }) of Vi (resp. Wy).
Finally, we consider the problem:

Find uy € CN ANLIN = fN, (2)
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1. (a) Show that problem (1) is equivalent to problem (2).
(b) Prove that:

the problem (1) has generically (Vf) one solution — N = P. “4)
Hint: Use that dim(Rg(Ay)) + dim(Ker(Ay)) = N.

2. Weset N = P,Vy = Wy and By = By

Compute the new Galerkin matrix A and the right hand side vector f for problem
(1) after a permutation of the basis vectors of By, .

Hint: Introduce a permutation matrix P.

Bitte wenden!



3. We set Vy = Wy and By = By,. We denote by %%/ the basis obtained by scaling
the basis vectors of By :

B = (aypy)Y, withVi=1,..,N o} € R". (5)

Express A% and f% with respect to Ay, fy, a’y, where A% and f% are the Galerkin
matrix associated to problem (1) and to the basis B?,

4. The operator equation (1) is set in finite dimensional spaces. Hence, after choosing
bases for Vy and (Wy)' it can be converted into a linear system of equations. Which
bases have to be chosen, such that we exactly end up with (2)?

5. We set N = P, and we suppose that Ay is bijective:

For a fixed basis By = (qk)Y, of Wy, define a basis By = (pyy)Y, of Vy such
that:

N
uy = Y {fxidy) Py 6)
=1

where wu is the solution of problem (1). What is the Galerkin matrix A y associated
to By and By ?

6. Consider the bilinear form:
a: LQ([O; 1]) x L2([0; 1) —

R
(u,v) — /Ou(x) v(z). )

(a) Does this bilinear form satisfy the inf-sup condition in L?([0; 1])?
(b) We set:

Vx = span(By) € L*([0;1]) and Wy = span(By) C W C L*([0;1]), (8)
with:

By = {ph 1) - R 2t [ =0, N-1},
9)
By = {dh+ [0:1] =R, = T wny(a) [ k=0, N =1},
where [;(z) = 1if 2 € I and 0 else.
Compute the Galerkin matrix A .

(c) Write a MATLAB code which computes the inf-sup constant vy for some N’s.

Siehe nichstes Blatt!
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Testat requirement: 50% of the theoritical exercises and 50% practical exercises (MAT-
LAB) should be solved.

Appendix: Singular Value Decomposition (SVD):

Let A be an element of CV*V, We will show that there exist U € CV*V unitary and
V € CY*¥ ynitary and D € CY*¥ diagonal such that:

A = UDVH, (10)

First, we consider AA” € CV*N_ This is a symetric matrix. Therefore, there exist U €
CN*N unitary and D, € CV*V diagonal satisfying:

AA" = UD,U" (11)
In other words, there exist N vectors u; and /V scalars A; such that:
AAT v, = N\ u;, foralli=1,.. N. (12)

where the u;’s are the columns of the matrix U and )\; are the coefficients of the diagonal
matrix Dy. The u; satisfies the orthogonal property:

U'U =1 < u'u; = lifi=j and Oelse (13)
We define the v; in the following way :

ATy,
icl={icNwithl <i<Nand A¥ w; £0}, v, =: HAHi‘lH. (14)
u;

Remarking that Vi € I:

{ AT u||? = (A u; AP w) = (AAY u; w) = A, as)
(AH u;; AP v)) = (A7 u; A uy) = (AAR u;; uy) = N (w; vy),
leads to for all z and j in [:

vilv; = lifi=j and Oelse. (16)

Bitte wenden!



By the Gram-Schmidt procedure, we complete the system of vectors (v;);c; so that the
completed version (v;)Y, keep the orthogonality property (16). By construction, one has:

VANvi = ATw, Vi=1,.. N. (17)
Now, we denote by V. € CV*¥ and D € CV*V the matrices given by:

V = (vy|vy|...lvy) and D = 4/Ds,. (18)

The matrix V € CY*¥ is unitary and the matrix D € CV*¥ is diagonal with D, ; = \/\;.
Finally, equations (16) and (17) lead to:

D=VIiIAHU — VDU = A" — A =UDV~Y (19)

We say that the \/)\;, i = 1, ..., IV, are the singular values of the matrix A.

Matlab command:

[U,S,V] = svd(A) produces a diagonal matrix S, of the same
dimension as X and with nonnegative diagonal elements in
decreasing order, and unitary matrices U and V so that
A = U*3*V'.

S = svd(A) returns a vector containing the singular values.

Smin = svds(A,1,0) returns the smallest singular value.



