Serie 2

Context: Galerkin approximation.

Theoretical Exercises: 1.–5.

Practical Exercise: 6.

Let V_N and W_N be two finite dimensional spaces with $\dim(V_N) = N$ and $\dim(W_N) = P$. Let $A_N : V_N \to (W_N)'$ be a linear operator. Let f_N be an element of $(W_N)'$

Find
$$u_N \in V_N$$
, such that $A_N u_N = f_N$. (1)

We introduce a basis $\mathfrak{B}_V = \{p_N^1, ..., p_N^N\}$ (resp. $\mathfrak{B}_W = \{q_N^1, ..., q_N^P\}$) of V_N (resp. W_N). Finally, we consider the problem:

Find
$$\mathbf{u}_N \in \mathbb{C}^N$$
 $\mathbf{A}_N \mathbf{u}_N = \mathbf{f}_N,$ (2)

with

$$\begin{aligned}
\mathbf{A}_{N} &= \left(\left\langle A_{N}p_{N}^{i}; q_{N}^{j} \right\rangle_{W_{N}} \right)_{j,i=1}^{P,N} \in \mathbb{C}^{P \times N}, \\
\mathbf{f}_{N} &= \left(\left\langle f; q_{N}^{j} \right\rangle_{W_{N}} \right)_{j=1}^{P} \in \mathbb{C}^{P}, \\
u_{N} &= \sum_{i=1}^{N} \mathbf{u}_{N}^{i} p_{N}^{i}.
\end{aligned}$$
(3)

- **1.** (a) Show that problem (1) is equivalent to problem (2).
 - (b) Prove that:

the problem (1) has generically $(\forall f)$ one solution $\implies N = P$. (4) **Hint:** Use that $\dim(Rg(A_N)) + \dim(Ker(A_N)) = N$.

2. We set N = P, $V_N = W_N$ and $\mathfrak{B}_V = \mathfrak{B}_W$.

Compute the new Galerkin matrix $\underline{\mathbf{A}}_N$ and the right hand side vector \underline{f}_N for problem (1) after a permutation of the basis vectors of \mathfrak{B}_V .

Hint: Introduce a permutation matrix **P**.

Bitte wenden!

3. We set $V_N = W_N$ and $\mathfrak{B}_V = \mathfrak{B}_W$. We denote by \mathfrak{B}_V^2 the basis obtained by scaling the basis vectors of \mathfrak{B}_V :

$$\mathfrak{B}_V^2 = (\alpha_N^i p_N^i)_{i=1}^N \quad \text{with } \forall i = 1, ..., N \quad \alpha_N^i \in \mathbb{R}^*.$$
(5)

Express \mathbf{A}_N^2 and \mathbf{f}_N^2 with respect to \mathbf{A}_N , \mathbf{f}_N , α_N^i , where \mathbf{A}_N^2 and \mathbf{f}_N^2 are the Galerkin matrix associated to problem (1) and to the basis \mathfrak{B}_V^2

- 4. The operator equation (1) is set in finite dimensional spaces. Hence, after choosing bases for V_N and $(W_N)'$ it can be converted into a linear system of equations. Which bases have to be chosen, such that we exactly end up with (2)?
- 5. We set N = P, and we suppose that A_N is bijective:

For a fixed basis $\mathfrak{B}_W = (q_N^i)_{i=1}^N$ of W_N , define a basis $\mathfrak{B}_V = (p_N^i)_{i=1}^N$ of V_N such that:

$$u_N = \sum_{i=1}^N \left\langle f_N; q_N^i \right\rangle \, p_N^i \tag{6}$$

where u_N is the solution of problem (1). What is the Galerkin matrix \mathbf{A}_N associated to \mathfrak{B}_V and \mathfrak{B}_W ?

6. Consider the bilinear form:

$$\begin{cases} \mathbf{a}: \ L^2([0;1]) \times L^2([0;1]) \to \mathbb{R} \\ (u,v) \mapsto \int_0^1 u(x) \ v(x). \end{cases}$$
(7)

- (a) Does this bilinear form satisfy the inf-sup condition in $L^2([0; 1])$?
- (b) We set:

$$V_N = \operatorname{span}(\mathfrak{B}_V) \subset L^2([0;1])$$
 and $W_N = \operatorname{span}(\mathfrak{B}_W) \subset W \subset L^2([0;1])$, (8) with:

$$\begin{cases} \mathfrak{B}_{V} = \left\{ p_{N}^{k} : [0;1] \to \mathbb{R}, \ x \mapsto x^{k} \ \middle/ \ k = 0, ..., N-1 \right\}, \\ \mathfrak{B}_{W} = \left\{ q_{N}^{k} : [0;1] \to \mathbb{R}, \ x \mapsto \mathbb{I}_{\left[\frac{k}{n}, \frac{k+1}{n}\right]}(x) \ \middle/ \ k = 0, ..., N-1 \right\}, \end{cases}$$
(9)

where $\mathbb{I}_I(x) = 1$ if $x \in I$ and 0 else.

Compute the Galerkin matrix A_N .

(c) Write a MATLAB code which computes the inf-sup constant γ_N for some N's.

Siehe nächstes Blatt!

Coordinators: Sébastien Tordeux, HG J16.1, tordeux@math.ethz.ch, Harish Kumar Kaushik, HG G56, harish@math.ethz.ch

Testat requirement: 50% of the theoritical exercises and 50% practical exercises (MAT-LAB) should be solved.

Appendix: Singular Value Decomposition (SVD):

Let A be an element of $\mathbb{C}^{N \times N}$. We will show that there exist $\mathbf{U} \in \mathbb{C}^{N \times N}$ unitary and $\mathbf{V} \in \mathbb{C}^{N \times N}$ unitary and $\mathbf{D} \in \mathbb{C}^{N \times N}$ diagonal such that:

$$\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^{H}. \tag{10}$$

First, we consider $\mathbf{A}\mathbf{A}^H \in \mathbb{C}^{N \times N}$. This is a symetric matrix. Therefore, there exist $\mathbf{U} \in \mathbb{C}^{N \times N}$ unitary and $\mathbf{D}_2 \in \mathbb{C}^{N \times N}$ diagonal satisfying:

$$\mathbf{A}\mathbf{A}^{H} = \mathbf{U}\mathbf{D}_{2}\mathbf{U}^{H}$$
(11)

In other words, there exist N vectors \mathbf{u}_i and N scalars λ_i such that:

$$\mathbf{A}\mathbf{A}^{H}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i}, \quad \text{for all } i = 1, ..., N.$$
(12)

where the \mathbf{u}_i 's are the columns of the matrix U and λ_i are the coefficients of the diagonal matrix \mathbf{D}_2 . The \mathbf{u}_i satisfies the orthogonal property:

$$\mathbf{U}^{H}\mathbf{U} = \mathbf{I} \iff \mathbf{u}_{i}^{H}\mathbf{u}_{j} = 1 \text{ if } i = j \text{ and } 0 \text{ else.}$$
 (13)

We define the v_i in the following way :

$$i \in I = \{i \in \mathbb{N} \text{ with } 1 \leq i \leq N \text{ and } \mathbf{A}^H \mathbf{u}_i \neq 0\}, \quad \mathbf{v}_i =: \frac{\mathbf{A}^H \mathbf{u}_i}{\|\mathbf{A}^H \mathbf{u}_i\|}.$$
 (14)

Remarking that $\forall i \in I$:

$$\begin{cases} \|\mathbf{A}^{H} \mathbf{u}_{i}\|^{2} = (\mathbf{A}^{H} \mathbf{u}_{i}; \mathbf{A}^{H} \mathbf{u}_{i}) = (\mathbf{A}\mathbf{A}^{H} \mathbf{u}_{i}; \mathbf{u}_{i}) = \lambda_{i}, \\ (\mathbf{A}^{H} \mathbf{u}_{i}; \mathbf{A}^{H} \mathbf{u}_{j}) = (\mathbf{A}^{H} \mathbf{u}_{i}; \mathbf{A}^{H} \mathbf{u}_{j}) = (\mathbf{A}\mathbf{A}^{H} \mathbf{u}_{i}; \mathbf{u}_{j}) = \lambda_{i} (\mathbf{u}_{i}; \mathbf{u}_{j}), \end{cases}$$
(15)

leads to for all *i* and *j* in *I*:

$$\mathbf{v}_i^H \, \mathbf{v}_j = 1 \text{ if } i = j \quad \text{and} \quad 0 \text{ else.}$$
 (16)

Bitte wenden!

By the Gram-Schmidt procedure, we complete the system of vectors $(\mathbf{v}_i)_{i \in I}$ so that the completed version $(\mathbf{v}_i)_{i=1}^N$ keep the orthogonality property (16). By construction, one has:

$$\sqrt{\lambda_i} \mathbf{v}_i = \mathbf{A}^H \mathbf{u}_i, \quad \forall i = 1, ..., N.$$
(17)

Now, we denote by $\mathbf{V} \in \mathbb{C}^{N \times N}$ and $\mathbf{D} \in \mathbb{C}^{N \times N}$ the matrices given by:

$$\mathbf{V} = (\mathbf{v}_1 | \mathbf{v}_2 | ... | \mathbf{v}_N) \quad \text{and} \quad \mathbf{D} = \sqrt{\mathbf{D}_2}. \tag{18}$$

The matrix $\mathbf{V} \in \mathbb{C}^{N \times N}$ is unitary and the matrix $\mathbf{D} \in \mathbb{C}^{N \times N}$ is diagonal with $\mathbf{D}_{i,i} = \sqrt{\lambda_i}$. Finally, equations (16) and (17) lead to:

$$\mathbf{D} = \mathbf{V}^{H}\mathbf{A}^{H}\mathbf{U} \implies \mathbf{V}\mathbf{D}\mathbf{U}^{H} = \mathbf{A}^{H} \implies \mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{H}.$$
 (19)

We say that the $\sqrt{\lambda_i}$, i = 1, ..., N, are the singular values of the matrix **A**.

Matlab command:

[U,S,V] = svd(A) produces a diagonal matrix S, of the same dimension as X and with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that A = U*S*V'.

S = svd(A) returns a vector containing the singular values. Smin = svds(A, 1, 0) returns the smallest singular value.