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The presence of small inclusions modifies the solution of the Laplace equation posed in a
reference domain ). This question has been studied extensively for a single inclusion or well-
separated inclusions. In two-dimensional situations, we investigate the case where the distance
between the holes tends to zero but remains large with respect to their characteristic size. We
first consider two perfectly insulated inclusions. In this configuration we give a complete mul-
tiscale asymptotic expansion of the solution to the Laplace equation. We also address the
situation of a single inclusion close to a singular perturbation of the boundary 0€,. We also
present numerical experiments implementing a multiscale superposition method based on our
first order expansion.
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1. Introduction

The presence of small inclusions or surface defects alters the solution of the Laplace
equation posed in a reference domain (2. If the characteristic size of the perturbation
is small, one can expect the solution of the problem posed on the perturbed geometry
to be close to the solution of the reference shape. An asymptotic expansion with
respect to that small parameter — the characteristic size of the perturbation — can
then be performed.

The case of a single inclusion w, centered at the origin 0 being either in €2, or on
0%y, has been deeply studied, see Refs. 12,9, 10, 15, 6, 7 and 1. The techniques rely on
the notion of profile, a normalized solution of the Laplace equation in the exterior
domain obtained by blow-up of the perturbation, see (1.2). It is used in a fast variable
to describe the local behavior of the solution in the perturbed domain. Convergence of
the asymptotic expansion is obtained thanks to the decay of the profile at infinity.
For example, if we impose Neumann boundary conditions on the inclusion and
Dirichlet on 0€2,, the expansion takes the form

x .
u.(w) = up(a) + eV (2) +rl(@),  with [l = OE),  (LD)
where

e uy is the solution of the Laplace-Dirichlet problem in Qy: uy € H (), —Auy = f,
o Vj is a profile satisfying

AV, =0 in R2\ @,
OnVyp = —Vu(0) -n on dw, (1.2)
Vo—0 at infinity,

where n denotes the unit normal vector pointing into w.

We present, in this work all the proofs of the results announced in Ref. 3. We
consider, in two-dimensional situations, the case of two singular perturbations. Let
Q, w™, and w* be three bounded domains of R2, each containing the origin 0. For
e > 0, small enough, we define the perturbed domain 2, as

Q. = O\ (w- Uwl), withw? =2F 4 ew®, (1.3)

where ¥ = £1.d with a given unitary vector d, and a real number 7,. Shortly, Q.
consists of {2y from which two e-inclusions at distance 27, have been removed, cf.
Fig. 1(a).

We aim at building an asymptotic expansion of the solution u, of the Laplace
problem in €,

—Au, = f in Q.
u, =0 on I' = 09y, (1.4)

_ +
Opu. =0 on dwZ,
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Fig. 1.  Geometrical settings for perturbed domains. (a) Two interior inclusions of size €, at distance 27,,
(b) Boundary perturbation.

for some L? datum f whose support does not contain the origin 0. This is only a
technical restriction. In the general case, the asymptotic expansion contains extra
terms due to the expansion of fnear the origin 0, see Ref. 4. We restrict ourselves to
homogeneous Neumann boundary conditions on dwZ, although generalizations to
other conditions are possible. Besides, one of the inclusions may be localized at the
boundary T' of €, (or even simply be removed, the remaining inclusion moving
towards the external boundary), see Fig. 1(b). Note that the origin now lies on 9€;.

The results obtained previously for a single perturbation easily extend to the case
of two (or finitely many) inclusions within two situations:

1. Inclusions at distance O(1). It corresponds to 1. = 7 independent of ¢. In this case
considered in Ref. 13, Sec. 5.3, the centers z* are independent of . The decaying
profiles V" are harmonic in R2\ w* and satisfy the boundary conditions

V" = —Vug(z®) -n on dw*.

At the first order, the holes do not interact with each other, their contributions are
merely superposed

w.(x) = ug(z) + e {VJ (“’” _Eﬁ) +v5 (£ _8””)} +ri(a),

with |72l 10, = O(?). (1.5)

2. Inclusions at distance O(g). It corresponds to 1, = ce with a constant ¢ € R. Here
the two inclusions constitute a unique pattern at the scale . This case is actually
handled as a single inclusion w = w™ Uw™, self-similar with respect to the origin 0.
The expansion reads

xz .
u-(a) = up(@) + Wy (2) + i@, with [rlllm) = O,  (16)

where the profile W, is associated with the whole pattern w.

These two situations show radically different behaviors: no interaction and full
interaction. Here we focus on the intermediate cases, where the inclusions are mod-
erately close, i.e.

7. — 0 and 7./e — 400 (ase —0). (1.7)
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One can expect to have a weak interaction between the two inclusions. To quantify
this effect, we specify the range 7. as 1, = ¢ with a € (0,1). Other scales could be
considered as well but € is rather natural and will lead to interesting regimes of
interaction. The limit case @ = 0 corresponds to inclusions at distance O(1) while the
other limit @ = 1 corresponds to inclusions at distance O(e). Let us mention that a
three-scale problem has been treated in Ref. 13, Sec. 5.4, Example 5.4.2. It consists in
a bump at scale ! on a e-boundary singular perturbation of a smooth domain.
Some techniques involved are close to ours and the geometrical setting is different.

This work is organized as follows. In Sec. 2, we precise the geometrical setting we
shall work within and state the multiscale asymptotic expansions. In Sec. 3, we
gathered all the preliminary results needed to construct and justify the expansions of
the solutions of the considered boundary value problems. Section 4 is devoted to
the proofs of Theorems 2.1 and 2.2. Finally in Sec. 5, we show numerical results
obtained with the first order approximation, confirming our theoretical results. We
also discuss the limitation in e of the asymptotic regime as well as alternative
correction methods.

2. Multiscale Asymptotic Expansions

We now consider the situation of Fig. 1, where the distance between the two
inclusions equals £ with a € (0, 1), and we focus on the following two-dimensional
problems which cover the main difficulties and techniques: u, € H'(£2,) satisfies the
Laplace equation —Awu, = f with various boundary conditions, see Fig. 1:

(a) two Neumann inclusions: u. = 0 on I' and d,u. = 0 on dw_ U dw],
(b) a Neumann inclusion and a Dirichlet boundary perturbation™: d,u, = 0 on dw_,
u, = 0 elsewhere.

We start with giving a brief description of the first terms in the expansions.
Theorems 2.1 and 2.2 state the complete asymptotics with optimal remainder
estimates.

Case (a). For two Neumann inclusions, centered respectively in x; and 2 (sep-
arated by a distance 2¢®), the first correctors involve the profiles V;* as introduced
in (1.2)

u.(z) = ug(x) + € {VG (”” _fs) LV <””” _fgﬂ i), (2.1)

with 72| 10,

_ O(emin(l+(y,3—2a) ) .

2In this case, the definition of the perturbed domain €, is slightly different, see Ref. 7 or later.
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The profiles satisfy ||V (— ;‘”fi)HHl(QE) = (O(1) and only depend on the shape of w*
and on the gradient of the limit term at the origin Vu(0). We emphasize that the
origins zZ of the profiles do vary with ¢, unlike z* in Eq. (1.5) and 0 in (1.6).
Moreover, the remainder is of order € as &« — 0 or & — 1 because of the inadequacy of
the profiles with the geometry.

We may understand expansion (2.1) in the following way: the main contribution
of the two inclusions is merely the superposition of their individual effects. The
remainder r! contains information about higher-order influence. It is interesting to

describe further the structure of this remainder:

o for a < 2/3, the inclusions are relatively far away from each other. The leading
term in 7! is O(¢!**) and arises from the Taylor expansion of u, at the origin 0;

e for2/3 < a < 1, the inclusions are closer. The remainder 7! is O(£32%) and mainly
consists in the interaction between the profiles V; and V,';

o for & = 2/3, the two contributions are equally balanced.

Theorem 2.1. The solution u, of problem (1.4) admits the expansion at order N

w2 = wo(d) + 2 [Vo (z —6x5> LV (x —:?H

x— T x—x
I R e G et el

(p.g)eKn

+r(z),

with
9 3
Ky=1<(pq€eZ |p20,q2—§p+17qz—pandp+aq§N ,
(see Fig. 2),

)

”réVHHl(Qf) = 0(5N)

and the terms v,y a4, Vpﬁaq are built inductively, see Remark 4.1.

Case (b). This situation requires a slightly different definition of the geometry
because there is no inclusion between €2, and €. The origin 0 is assumed to be on the
boundary I of €, and I to coincide with a straight line in a neighborhood of 0 (the
curved case is not a mere adaptation since the perturbation is not self-similar any
more after straightening, see Ref. 7). The perturbed domain €, is defined as

Q. = [\ (@Z UB) U (BNed®), (2.2)

where B is a small (but fixed with respect to €) ball centered in 0 and @* is a
perturbed upper half plane. Precisely, & T is composed of three parts: two horizontal
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Fig. 2. The set of indices IC; for o = %

Tt

S1 S2

Fig. 3. Geometrical setting for perturbed upper half plane.

straight half lines rising from S; and S, (two points on the z-axis) and a Lipschitz and
rectifiable curve I' connecting S; to S, (see Fig. 3).

As explained in Refs. 7 and 17, the inclusion 2. C €, may not be satisfied: a cutoff
function has to be introduced to define a counterpart for uy on (.. Precisely, the
asymptotic expansion takes the form

(= (v -aC ()]
o) = 6(| Yt + 2 v (Z255) eV (2) ] + 7o)
with ”T;”HI(QC,) = o(e), (2.3)
where ((r) vanishes for r < r, and {(r) =1 for » > r*, and x(r) =1 for r < r, and

x(r) =0 for r > r*. The remarks about the interaction between the two pertur-
bations in case (a) still hold.

Theorem 2.2. The solution u. of

—Au, = f in Q.
u, =0 on 00 \Ow_, (2.4)

Opu. =0 on dw_,
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admits the expansion at order N

u.(z) = C(’%Duo(x) +5[Vo (x —gxg ) +x () Vo (g)]

b 3 e o(| ) e e [T () + i (2)]

(r.9)eXN

+r(x),

with ICx defined in Theorem 2.1 and

||7"£V||H1(QE) = O(EN)-

Remark 2.1. The question of adapting these results to alternative situations and, in
particular, to the n-dimensional case (n > 3) is very natural. The key for proving
Theorems 2.1 and 2.2 (see Sec. 4) is the behavior of the profiles at infinity: do they
decrease with respect to the distance to the origin or not? In dimension n, the profiles
decrease at infinity (see Ref. 2) and the methods used in the present paper can be
applied. However, all proofs (from the scaling of Sobolev norms to the behavior of
profiles and the construction of the expansion) have to be adapted step-by-step to
this new situation. Besides, let us mention a specificity of the two-dimensional case: if
Dirichlet conditions are imposed on the inclusions, logarithmic profiles increasing at
infinity are involved and other techniques have to be employed. This will be the
subject of a further work.

3. Preliminary Results
3.1. Scaling of Sobolev norms on parameter dependent domains

On the trace space of parametrized domains. In the following, we will have to use the
Sobolev space H'/2 of the boundary of an e-dependent domain €2.. This space can be
defined in two ways: either as TH'(2,) the trace space of H!().) with the norm

£z, = mf{llull )| v € H'(Q.) with u = f on 0.},
either through its usual definition of Sobolev space, i.e. subspace of L2(952,) with
finite norm (known as intrinsic norm)
[0 = fllz2@0.) + [fl2oa.
with

) — 2
(] gmf = /A&xé)ﬂ,%dazday

|z
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Gagliardo has shown in Ref. 8 that, if the domain is Lipschitz, the two different
norms on H /2 are equivalent. For a family of domains parametrized by ¢, this means
that the domains should be uniformly Lipschitz with respect to e.

Maz’ya and Poborchi discuss in Ref. 14, Sec. 4.1.3 situations where this property is
violated. Consider a single interior perturbation ), = Q\ew where the nucleation
center 0 belongs to 2. The two terms in the intrinsic norm should be weighted. We
quote their result once adapted to the space H/2 in the case of plane domains: the
trace norm || f|| 71 (o,) is equivalent, uniformly in €, to the norm

(5|1n5|)71/2||f||L2(an) + [fl200.- (3.1)

In this work, we use both definitions of the norm on H/2(95),): the definition as
I ll7#1(c.) is involved in a priori estimates, and the intrinsic definition as [|-[| g12(9q,)
is used to compute the norm of explicit functions. Therefore, we only need a rough
inequality allowing to control the TH'(£2,) norm with respect to & for the family of
deformations under consideration.

Lemma 3.1. Let Q, be defined in (1.3). There is a constant C (independent of €)
such that for all f € H'/?(95).)

1 fllra ) < 0572||f||H1/2(695)' (3.2)

Proof. Fix g; > 0 small enough and consider ), : this is a Lipschitz domain. By
classical results, there is a continuous extension operator E. : HY/2(99, ) — H'(Q.,).

Now, we define a diffeomorphism ®. from €. onto (). involving three different
scales:

e ®_ coincides with identity at scale 1 (in particular the boundary of € is
invariant),

e is a contraction of ratio (£/gy)® around 0,

e is a contraction of ratio /¢, around xsio

We construct, in two steps, such an application thanks to cutoff functions. Let us
introduce some notation. Let R, R, > 0 be such that

B(0,2R) C ., w2 C B(z%,R.)C B(0,R) and 0¢ B(z2,2R.).

Now let ¢ be a non-increasing function in C*([0,400), [0,1]) with ¢(t) =1ift <1
and ¢(t) = 0 if ¢ > 2. The application ®. _... defined by

oo oo (D))

is a diffeomorphism that corresponds to identity outside the ball B(0,2R) and to a
contraction around 0 of ratio (/2y)® inside B(0, R). Thus it maps == onto z= and
preserves 0. Note that @, _..(B(zZ,R.)) = B(z, Ri(c/g))®). In a similar way, we
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define ®.._,. by
Do (2) = [1 - <p<(€?o>|$]—%—$|> - 90((650) E R l)}
(@) () e
A ER (D) e

This is also a diffeomorphism that introduces the third scale. The wanted mapping is
obtained by the composition @, = ®.._,. o ®_ ... and maps wéf) onto w>. One checks
that ®_(€,) = . and that &y~ < CeL.

Now, thanks to E. and ®., we define an extension operator E. from H 12(09),)
into H(€.) by

E(f) = [E.,(fo®.)] o ® .
From the definition of the trace norm, we check that
Il meoay < I1B-(Hllmo) < CIO wis || B, (f (I)E)HHl(SZEO)'
Since E, | is a continuous operator, there exists a constant ¢ such that
1Bz, (f 0 @), < cllf o @ellmzon,)-

Besides @, behaving like a contraction of ratio /e, in the vicinity of awg, we check
that

£ o @l iz 09, < — ||f||Hl/2 a0.)» (3.3)
since
If o @cllz200,) < i—0||f||L2(anf) and  [fo®.rpa < [flon.-
Gathering these estimates, we deduce (3.2). m|

Remark 3.1. The weight arising in Lemma 3.1 is clearly not optimal, see (3.3). In
particular, we have lost the dependency in «. Nevertheless, we do not need an
equivalent norm of |||,y for our purpose since a coarse estimate is enough to
validate the complete asymptotic expansion.

Remark 3.2. The case (b) is a direct adaptation of the interior case: the boundary
perturbation appears in a flat part of 9€); and this line is locally invariant under
contraction.

Traces of smooth functions. In the following, we will face the question of evaluating
on cw (with w = w®) various norms of the trace of a function f which is smooth

around 0.
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Lemma 3.2. Let fbe a smooth function defined around 0. Let M > 0 be such that for
all multi-indices k with |k| < M, 0,,f(0) = 0. Let w be a regular domain. Then,
[l 1200y < Ce™, (3.4)
I llra ey < CeM2 (3.5)

Proof. Let us first consider the L2 norm. We set = X, then
e = [ \f@)do, =< [ 17(eX)do.
edw Ow

Therefore, since fis assumed to be smooth around 0, its Taylor expansion provides
the expansion f(eX) = e Py;(X) + o(e™) (here P); denotes the polynomial term of
order M in the Taylor expansion of fat 0), then

£ 72 (c0m) < CE2MHD. (3.6)

We now consider the double integral term defining the fractional part of the norm
H'/2, By change of variables, we get

_ 2 2
// 4”(36) f(2 ) do,do, = // f(d;)l doxdoy
(cow)x(cdw) |z =yl dx |5X — Y|

|f(eX) = f(eY)[?
= d d .
/waﬁw |X Y|2 oxaoy

Now we have |f(eX) — f(¢Y)| < &|X = Y|V f|| px(av)- From Taylor’s expansion of f
at 0, we obtain easily ||V f|| () < Ce™~!. Then,

€

|f(eX) — f(eY)|? 2M
doydoy < C .
//awm X —v[? oxaoy = E

By definition of the H'/2 norm, we get the upper bound || f;12(-9.) < Ce™. O

Lemma 3.3. Letw be a regular domain. Then, for f € H'(w) with Af € L*(w),
1
||aanH’1/2(£8w) < g HanF”H’lﬁ(@w)?

where F is deduced from f by dilation and H Y2 is equipped with the dual norm.

Proof. Let ¢ € H'?(¢dw). Using the scaling X =< and denoting F(X) = f(z),
®(X) = ¢(x), we get by the Green formula

Onf(@)p(z)do, = / Vi(z) - Veola)de - / NGO

0w

/ VF(X) V®(X)dX — / AF(X)®(X)dX

_ / 0, F(X)®(X)doy.
ow
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We deduce
p Jatuf@e@do, [, 00PX)®(X)doy [Pl
PEH2(c0w) ||80||H1/2(50w) PEHY2(c0w) H(I)HHI/?(Dw) ||80|\H1/2(eaw)
_c S OuF (X)B(X)dorx
T € peH12(0w) 12l 12 () 7
according to (3.3). m|

3.2. Existence and behavior of the profiles

We now consider the boundary value problem (1.2). Accurate informations about the
behavior at infinity of the profiles are needed for the analysis of the asymptotic
expansion. Accordingly we introduce a definition which expresses a behavior at
infinity like | X| 2.

Definition 3.1. Let O (|X|®) be the set of functions f € L2(R2?\w*) such that,
for any multi-indice 4 € N2, there exists a positive constant C such that

X|PHI9F(X)| < C, VX € RE\WE.

A function V is homogeneous of order —k if V(AX) = A*V(X) for X € R? and
A > 0. The following proposition gathers an existence and uniqueness result from
Ref. 2 with an expansion at infinity obtained through Fourier series.

Proposition 3.1. (Interior case) Let w be a smooth bounded domain of R? with
0 € w. We assume that g € H~/?(0w) satisfies (g, 1) y-1/25 12 = 0. Then the boundary
value problem

—AV =0 in R2?\w,
0V =9 ondw, (3.7)
V-0 at in finity,

admits a unique weak solution Vj in the variational space

Vv
(1 4 [XT) log(2 + [ X])

{V; VV € L*(R?\w) and € L2(R2\w)}.

Furthermore, its solution can be decomposed as

V(X) = 3 Vos(X) + O (1X] ), (3.8)
k=1

where Vy;, € O (| X|7*) is a homogeneous harmonic function of order —k.

The corresponding result for a perturbation on the boundary is quoted from
Refs. 6 and 7.
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Proposition 3.2. (Boundary perturbations) Let @™ be the perturbed upper half
plane appearing in (2.2). Let fin H/?(0w™) be such that f = 0 on the two infinite
connected half lines of 00T (that is to say outside of the perturbation). Then the
boundary value problem

—AV =0 in o,
V=tf on 0w, (3.9)
V-0 at in finity,

admits a unique weak solution Vod in the variational space

1%
V; VV e L (ot d L2 (1) 3.
{ ; VV e LP(&071) an 1+|X|e (@ )}
Furthermore, this solution can be decomposed as

1K) = 3 Vor(X) + O (1X]40), (3.10)
k=1

where Vo), € O (|X|7*) is a homogeneous harmonic function of order —k.

Remark 3.3. A homogeneous harmonic function of order —k reads r =" f,.(6) where
the radial function f;, is a linear combination of cos kf and sin k6.

3.3. Construction of the correctors

In the sequel, we will use profiles to take into account the effect of w® on wF. They
have a small but nonvanishing trace on 0f,. In order to define the next corrector, we
estimate their traces on the boundary 0f2..

Geometrical setting (a). We consider the traces on the other parts of 9., that is
to say on 9§ and dwZ. The expansion of |z — zX| for € 90 gives the existence of
coefficients aj* such that

|:L’—1?8|—|$|<1:F€ —2—1— ) Zalgal

|| =0

For any x € 09, we denote by A= the angle of the polar coordinates centered at z=:

die® doe®
cosF = 9014:71‘5; and sinfF = mii
|z — 22| |z —aZ|

with (dy,d,) the coordinates of d. Therefore, there exist coefficients by such that

+ + k
96 |0§20 Zb o

k>0
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Note that the leading terms ai and bi are nothing but the polar coordinates cor-
responding to the origin. For any normalized homogeneous harmonic function of
order —k of the decomposition (3.8), we deduce the expansion

r—at

ek + k + _al
For z € 89y, V; :|x—xi|kfk(9€):€ > digeet. (3.11)

>0

Next, we examine the trace on dw/ . Let x belong to dw . There exists X € dwT such
that © = 2T + cX. Then, the distance between points = and = satisfies

2(1-a) 3
:v—a:ﬂ—|:1:25“d—i-a€X|—25—:‘*(14:510‘d~X—|—€ |X|2>

4
= Z afe—ol,

>0

Here, the = admit the expansion
02 pr = Zi)kif(l*“)k-
k>0

The leading terms ai and Boi satisfy af =2,d = :F(COSINJSE, sinl;a[). Therefore there
exist coefficients dj° entering into the expansion of the profile:

F T xfi _ +_l(1-a)
For z € wr, V, = dielt, (3.12)
€ =k

Geometrical setting (b). We perform the same analysis after splitting the outer
boundary into the perturbed part and the unperturbed one. Namely we distinguish
for z € 0. \Ow_. a neighboring part to 0 at distance of order ¢ and a far part
containing the remaining boundary

Vil2) = Vin(2) + Vis (),
with Vio(2) = (1= ¢(5))Vi(a) and Vip(2) = ¢(2)Vic2).

The same arguments as previously give an expansion of Vj,(z) in powers of e~
starting with (1) as in (3.12).

4. Proofs of Theorems 2.1-2.2
4.1. Proof of Theorem 2.1

For the clarity of the presentation, we make a constructive proof to explain the
ansatz. Let us now start with the asymptotic expansion and its first corrector. We
introduce the first remainder r? defined on Q. by

0
U = Uy +T;.
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Then ¢ satisfies

~Ar?=0 in Q,
r?=0 on 09, (4.1)
0,r% = —0puy on dwl Udw,.

As mentioned in (1.2), we introduce the profiles V. Thanks to Proposition 3.1, they
are the unique solutions of

—AVE =0 in R2\ w¥,
W Vit = —n - Vugy(0) on dw?, (4.2)
Vit —0 at infinity.

Applying again Proposition 3.1, there exist Vojfk €O0(IX|™%) for k=1,...,N—1
such that

=

Vit (X) = 71V0ik(X)+Om(|X|‘N), VX e R?\ w*. (4.3)

)
1

=~
Il

We now introduce the second remainder ! defined for any z € Q. by:

u.(z) = up(z) + E[VO (gc —€x5> v (”’ _;3” +ri().

Inserting this definition into the boundary value problem (1.4), we check that r!
satisfies

—A‘r; =0 in QE?

e ot
ri(z) = —¢ [VO (a: 5335 ) + V' <x Exs )] for x € 09,

(4.4)

r—x

Opri(z) =1 - Vuy(0) —n - Vug(z) —n - VVO< £ ) for z € Ow?,

x—zf

Onrl(z) =1 - Vu(0) —n- Vuyg(z) —n - VV," for x € Ow_ .
0

3

Let us give more information about the behavior of the trace of ! on the boundaries.
According to (4.3) and (4.4) the following relation holds for any x € 9¢):

N-1 _ n
1 _(r—x, +([x—T, x |-N
Yz) = — v, v, O, (’ —’ ).
e(z) 5;{ 0.k< . >+ O,k< - )}4‘5 5
Then, using (3.11), there exist f;; such that we can rewrite

ri(m) = Y ekf(a) +o(eN), Va e 0, (4.5)
j>1,k>0,
j+ak<N
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Let us look at the trace of r! on dwZ. For any = € dwZ, there exists X € dw* such
that:

m:xf—l—aX::I:a“d—i—aX.
Thus
Vrl(z) = Vg (0) — Vug(+e®d + eX) — VVT (£2e°71d + X). (4.6)

Two contributions give the order of V! on wZ: the Taylor expansion of v, and the
Neumann trace of the profiles V" on the inclusion dw.

e Assuming u; is smooth enough, the Taylor expansion of Vu, provides

Vug(£e¥d + eX) — Vuy(0)
) +1)k . .
= Y ek L Do), X 4 ofe™),
jZO,kZO: (j+ )
0<j+ak<N

For convenience, we denote

k
g5x(X) = ‘mmmw(ond’%xﬁ] ‘n, VX edwt.

Note that D7+*+1y,(0)[d*, X7] - n is harmonic as Taylor monomial function of the
harmonic function u,. Therefore one has

/a ) gix(X)doy = 0. (4.7)

e Since o < 1, then =1 — oo ase — 0 and so the coefficient ¢*~1d gives the leading
term in VV". From Proposition 3.1, there exist h] satisfying:

O Vy (271 d+ X) = Y e IRT(X) 4 oe), (4.8)
2<j<
with
/@ ) hi(X)doy = 0. (4.9)

Combining (4.6) and (4.8), we deduce for z = +c*d + X € Jw*

8nr;(x) = Z Ej‘HUfgji’k(X) 4 Z E:j(l_a)h;:(X) + O(EN), (410)
720k =0, 2<jo
0<j+ak<N

Now we need to lift each boundary condition appearing in (4.5) and (4.10).
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e The functions f;; introduced in (4.5) generate correctors F}; defined by

—AF k= 0 in Qo,

{ g (4.11)
F‘j,k = _f],k on 890

These correctors do not satisfy the Neumann condition on the boundary of the
inclusions dwZ and so generate errors on these boundaries.

o The functions gj; and h generate profiles G ipand H ; with same behavior as the
first corrector. These profiles satisfy:

~AGH, =0  inR*\w*,
oG =—g; on dw?, (4.12)
G ;fk —0 at infinity,
and
F_ ; 2\ £
—AH/ =0 in R*\ w#,
OnH = —h] on dw*, (4.13)
Hf —0 at infinity.
The compatibility conditions (4.7) and (4.9) ensure the existence of these profiles.

The third remainder is naturally defined by:

u(@) = ug(z) + ¢ {Vo (9” ;x; ) +V (x ;"”3 )} + Y iR E ()

j=>1Lk>0,
j+ak<N
- +
v | e (T — EEE
o 3 et ren()]
j=>0,k>0,
0<jtak< N
o x—x7 x—xr 4.14
+ > elﬂ—“ﬂ{H;( €°)+H;< 8°>]+T?(m). (4.14)
2§j§%

We have defined new functions such that Ar? = 0 in .. There are three contributions
to determine the following remainder of the asymptotic expansion by this way:

e The Dirichlet trace on 02, comes from the trace of Gfk and H . To construct the
following term for the asymptotic expansion, we have to lift this condition.

o The functions F}; do not satisfy the Neumann condition on the boundary of the
inclusions dw® and we have to lift them as well.

e Finally we have a corrector due to the interaction: G, and H satisfy the Neu-
mann condition on dw. but not on dw: and similarly for G, H; . This is the
third condition to lift.
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Remark 4.1. As a consequence of (4.14), we can obtain the asymptotic expansion of

Theorem 2.2 for N = 2. Indeed, we just have to gather terms with same power of ¢ in
+

7% Up to order £2, we get

€

qu)UMI)*ngr(xEx;>+vg+($5x:)}

o e
+ > sp+aq(vp+aq(:c)+E{Vp+aq<%) +Vpiaq<x :5)])

both variables z and

(p.a)ECy
+0(€2),
with
9 3
Ky=q(a) €2’ | p=0,g=—gp+1lg>—pandptag<2y,
Vptag = Fpg
N G§_17q+qu ifp+qg=1,
Vitag = " .
G4 otherwise.

The same recombination may be obtained at any order £V. Nevertheless, all the
terms of steps up to N — 1 (written with a remainder of size o(c)) mix to give the
contribution at step N. The general formula for v, ., and Vpﬁaq is too technical to be
reproduced here. In the following, we mainly focus on the powers of € involved in the

expansion rather than describing the algorithmic construction of the terms.

The remainder 72 satisfies

~Ar?=0 in Q,,
, _(r—x r—a}

ri(z) =~ E: gﬂmﬂGm< € >+G%( 65)}

j>0,k>0,

0j<j+ak§N

o _ ot
S €1+jaj|:H;r(x x5>+Hj(m x5>}+O(EN) on 9,
2<i< © c

anrg(x) = Z Ejﬂlkanfjjﬁk(x) + Z EjJrakanGka (l‘ — L )

J>0k>1, i>0k>0, €
jtak<N 0<j+ak<N
o Tr—x_
+ E EJO‘JH;F< ° ) +o(eM) on dw=.
- ; &
2< <&

(4.15)
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Let us explain the evolution of the powers of € in the construction of the
asymptotic expansion. We write the possible powers of ¢ in the form j + ak with
(4,k) € Z2. First we look at rl. Powers of ¢ appearing in the Dirichlet trace on
09 are

Kl ={(j,k) eN’|j>1}.
For the Neumann condition on the inclusions, we define two sets:
K3 ={(,k) eN?|j+k>1},
K} ={(j,k) eNXZ|j>2and k= —j}.
Finally, let K! be defined by:
K'=K{UKyUKi =Ky UK},

since K1 C K3. The set K can be rewritten as the intersection of three convex sets:
3
K! :{jZO}ﬂ{kz —§j+1}ﬁ{kz2—j}.

Similarly, K2 is the set of powers of € appearing with the remainder 2. These powers
come from combination of K} and K 3. Let us develop all the possible configurations:

e K1 with KJ: The terms have the form e/t to:+k) with (4, &,/ k') € N4,
j+k>1,7+k >1. Then
K32 ={(,k) eN*[j+k>2}.
e K} with K3}: This combination leads to terms of the form ei*/+e( i) with
j+k>1,7 > 2, then
Ky ={(Gk) ENXZ|j>2,j+k>1}
e K} with K31: This combination leads to the definition
Kis={(k) ENXZ|j>4k=—j}

The set K2 = U< j<j<3 K7 is drawn in Fig. 4. It can be written as the intersection of
three convex sets:

K?:{jzo}n{kz—gj+2}m{k2—j}.

At each step of the construction of the asymptotic expansion, we obtain a new set
K™ of the possible powers of . Let us look at the evolution of the set K" with n > 2.
We can sum up the possibilities in three combinations:

e Two terms of the form eitek;
e Two terms of the form £/~;
e One term of the form /7% and one of the form /=,
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KZ

2
K;,

(a)
Fig. 4. The sets of indices. (a) Set K2, (b) Set K.

To deduce the set K3, we start from K? and we can make two operations: a trans-
lation je; @ ke, with j+ k > 1 or a translation j(e; — e;) with 7 > 2. Then K3 is the
convex defined by

K3:{j20}m{k2—%j+3}m{k2—j}.

By induction, we obtain immediately that the leading terms for the Laplacian and
traces of the remainder of order n are of the form O(gi*°¥) with (j,k) € K"
defined by

K":{jzo}ﬂ{kz—gj—i—n}ﬂ{kz—j}.

The first sets K™ are represented in Fig. 4. The vertices of the convex set K" are
(0,n) and (2n, —2n). The leading term is then O(g™in(en2n(1-)) Let us define the
critical exponent « such that an = 2n(1 — «), that is

2
o, ==
© 3

Then, the leading term is O(¢®") if a < o, and O(2"1-?)) else. This expresses the
fact that if the perturbations are rather close to each other (o, < ), the leading term
comes from the interaction (corresponding to the n(1 — «) exponent), while it is
given by the classical correctors induced by the Taylor expansion around 0 when the
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perturbations are distant enough (« < «). This was rather expectable from the
physical intuition of the problem.

In order to justify the size of the remainder in this formal expansion, we apply the
usual a priori estimates thanks to Lemmas 3.2 and 3.3. The obtained bound for
7211, is of order O(gmin(en2n(1=a))=2) "We recover the optimal estimate writing
rl =it O(eminten2n(1-0))) where ¢ = max([2], [{1]).

We can determine the maximum number of times n,,,, we have to perform this
iterative procedure to have an asymptotic expansion of order N:

N
{—} if a <a,;
a

nmax = N
—| if ..
[2(1 - aﬂ reo

4.2. Proof of Theorem 2.2

We will explain the first two steps of the construction of the asymptotic expansion.
The complete construction given in Sec. 4.1 for interior inclusions can easily be
adapted here. The main difference comes from the new lift induced by the cutoff in
the slow variables.

We split the exterior boundary of Q. in two parts: '] = e['* (see Fig. 3) and
' =90\ (dw- UT). We consider two smooth cutoff functions ¢ and x defined on
R such that {(r) vanishes for r < r, and {(r) = 1 for r > r*, and x(r) = 1 for r < r,
and x(r) = 0 for r > r*. The Taylor expansion of u; at order N reads

N
up(e) = x(l]) Y ayz® + Ry(z) = x(|2|) T (z) + Ry(z).
k=0

The function wug is not necessarily defined in the whole domain 2. but its Taylor
expansion Ty can be extended to €).. Hence we define the truncated function
belonging to H'(€,)

ig(@) = x(o) Ty (@) + ¢(| Z|) Rula).
0

The difference @y — uy is of order eV (see Refs. 7 and 17). The first remainder 7
defined on €2, by

~ 0
U = Uy + T,

satisfies
A =g ma
rd = onTY
(4.16)
rd = —a, on I},

Opr?=-n-Viy on dw;.
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To define ¢, we rewrite r:

7"2 = (u: —ug) — (U — u)

= (u- o) = (¢(| £]) = 1) (w0 = x(I - )Tw).

9

Since Ty is harmonic and considering the intersection of the support of the cutoff
functions y and (, we get for € small enough

1 . 2 .
e = S A¢(| <) o = x(1- D) = = ¢(| =) - Vo = x(I- D)
€ € € €
= O(eN1).
This contribution is small enough to be incorporated in the remainder ¥ of the
target expansion.

We easily check that u, and 7, equal 0 on I'Y. We introduce the profiles V.
According to Proposition 3.1, there exists a unique solution V;~ of

7AV0_ =0 in R2\F,
3nV0_ = —n- VUO(O) on &,u_, (417)
Vo —0 at infinity.

Proposition 3.2 gives the existence and uniqueness of the solution V" of the problem:

—AV =0 in o,
Voh(X) = =Vu(0) - X on ',
’ (4.18)
Vyi=0 on Wt \T'*,
Voh =0 at infinity.
We are now ready to introduce the second remainder r_:
- _(x—x. T
wlo) = (o) + 2| Vi (“55) +xlla i (2) |+ ko)
Since x = 1 on dw; UT S, we check that r! satisfies
—AT’; = 902 + 90; in st
ri(z) = —¢ [VO <x _Exg > + x(Jz|)V," (g)] for z € TY,
(4.19)

rl(z) = —ﬁo(x)—e[vo_ <$ ff) +VJ(§>} for z € TF,

Onri(z) =1 - Vuy(0) —n- Vig(z) —n - VV," (g) for z € Qw_ .
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Here

o1(@) = D2 Ve () = Txllel)- 9V (2) + eaella v (2).

There exist f; such that

Pty = 3 en@+ou (|2,

2<j<N-1

According to Propositions 3.1 and 3.2, we can find homogeneous functions Vo%k such
that for any 2 € T'’:

rl@)=—- 3 {Vojk<m_:)+x(x|)vm( )]HO (’g’w)

1<k<N-1

Using (3.11), there exist f;, such that we can rewrite on I'?

ri) =Y kg (a) + OEN). (4.20)
j>1k>0,
j+ak<N

Let z € U7 and X € T'F be such that z = ¢X. We define g} on 9™ by
1 . )
9, (X) = —ﬁDJUO(O)[X(J)] if X eI,

and by 0 elsewhere so that

lg(eX) + Ve (X) = Y eFgl(X).
2<j<N

There exist h; coming from the trace of Vj; such that

ri(z) = — Z kg (X) —¢ Z eI1=h 7 (X) + o(eV). (4.21)

2<y<N 1<j<-A

1-a

Let us look at the Neumann condition on dw;. As x = 1 on dw_, we have

Vrl(z) = Vu.(z) — Vig(z) — VVg (I ;xf_ ) VAT (;)

Let x € Ow_, there exists X € 0w~ such that x = e*d + £X. Since
Vig(x) = VTy(z) + VRy(z) = Vug(z) + O(V),
a Taylor expansion of wug gives

Vuy(0) — Vig(z) = Vuy(0) — Vuy(e®d + eX) + O(e)

Z Ej+(yk

y |
j>tor=0, UTE)
0<j+ak<N

DIy 0)[d®, X U)] 4 (V).
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We denote
-1
(j+ k)!

g X) = Dtk Ly (0)[d*, X7])-n, VX € ow.

Let us analyze now VV;". Since £ = £>~'d + X, Proposition 3.2 gives the existence of
coefficients h | such that, on dw_,

Vo (oM d+ X) = Y eI IRT(X) +o(e).

2<j<%
Consequently, on dw_,
Ourim) = Y etehgn(X)— Y RS (X) +o(eY).  (4.22)
J20,k20, 255 <5

0<j+ak<N

To construct the following corrector 72, we define w? as the solution in H1(€2,) of

{ —Aw! = —f; inQ,
wl =0 on 0.
We have to fit each boundary conditions given in (4.20) for I'?, (4.21) for T'} and

(4.22) for Ow.. The functions f;; introduced in (4.20) generate correctors F}
defined by

—AF;;, =0 in Q,
{ 8 (4.23)

F’j,k = _fjk on 890

The functions ¢!, g;, and hT generate profiles G, G;, and H] with similar
J J.k 7 J 7.k j

behavior as the other correctors. These profiles satisfy:

~AG; =0 in @t ~AH; =0 in o,
G;f = —gj+ on dw™, H; =—h; ondw",
G;’ —0 at infinity, H; =0 at infinity,
and
~AG;, =0 in R2\w—, —AHf =0 in R2\ o=,
OnGjp=—g;p ondw, 8HH;‘ = 7h;‘ on dw-,
Gir—0 at infinity, Hf —0 at infinity.

We check the compatibility conditions ensuring the existence of such profiles. The
following steps are similar to those in the case of interior inclusions and we can make
the same analysis for the indices appearing in the asymptotic expansion.
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5. Numerical Experiments

The computation of the solution u, of problem (1.4) is not a straightforward problem
since a very fine mesh is required if € is small. For such values of ¢, it is natural to use
the asymptotic expansions presented in Theorems 2.1—2.2. Precisely, we approxi-
mate u, by its first order expansion

wy (2) = ug () JrE{VO_ (x _€x5> vy (“’” _E””jﬂ. (5.1)

This means that 1, and the profiles V" have to be computed. While 1 is the solution

of a classical boundary value problem (in an e-independent domain which may be
coarsely meshed), the profiles are solution of a problem posed on an infinite domain.
We present in Sec. 5.1 a numerical method to obtain an accurate approximation of
the profiles, and in Sec. 5.2, we show how it is used to compute an approximation
of u,.

The numerical results shown hereafter have been performed with the Finite
Element Library Mélina, Ref. 11.

5.1. Computation of the profiles

In order to compute the profiles V;* involved in formula (5.1), we introduce the
normalized vectorial profile V.=V, solution of the following exterior boundary
value problem

—AV =0 inR*\w,
0,V =g ondw,
V-0 at infinity,
with g = —n. We can recover V* from V. via the formula
VE = Vuy(0) -V,
so that formula (5.1) reads

u (@) = uo(@) + Vg (0) - {vw (””” — “’) +V,. (”” _ax?ﬂ . .2)

£

The profile V will be approximated componentwise: V and g denote the first
component of V and g, respectively (of course, the same can be done for the second
component). Several approaches are available to compute V: integral equation,
infinite elements, truncated domain with integral representation or artificial bound-
ary condition. For the latter, we propose three absorbing conditions on |z| = R:

V=0, (5.3)
V 4+ RO,V =0, (5.4)

2
V+%anV—R7ATV= 0. (5.5)
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These conditions (Dirichlet/Robin/Ventcel) are said of order 0, 1 and 2, respectively
(the Robin condition was already used in Ref. 7). The considered problem is then

AV =0 in B(0, R)\w,
0LV =g on Jw,
(5.3) or (5.4) or (5.5) on 9B(0,R).

We present here an alternative method based on a conformal mapping to convert
the exterior domain into a bounded one. Precisely, we consider the inversion-sym-
metry ¢ : z+—1/z. The Laplace equation —AV =0 remains unchanged by hom-
ogeneity, the transformed profile W =V o ¢ solves then the Neumann boundary
value problem

—AW =0 in ¢(w),
IW = 05p(g0¢) on dp(w),
W (0) = 0.
In the case where w is the unit disk, the profile is explicitly known:
cos @ Ty
Viz) = = g and W(z) = ;.

Figure 6 presents the accuracy of the “inversion method” compared with the
“artificial boundary method” (absorbing boundary condition of various order with
cutoff radius R = 10; results shown for g(x) = cos § — 2 cos 26 — 3 cos 30 for which the
exact solution is V(z) = cos@/r + cos26/r? + cos 36/r3). The computations have
been done on a fixed mesh for each method (Qg geometric approximation, see Fig. 5),
and the interpolation degree is increased from Q; to Q.

(a) (b)

Fig. 5. Meshes used for the computation of the profiles. (a) Artificial boundary method (R = 10),
(b) Inversion method.
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Relative maximum error

—&— Atificial boundary method (order 0)
6 —©E— Artificial boundary method (order 1)
—#— Artificial boundary method (order 2)
—+— Inversion method

107 L L L L L L

2 3 4 5 6 7
Degree of interpolation [prop. to sqrt(number of DOF) ]

Fig. 6. Comparison inversion method/absorbing boundary condition.

It clearly appears that the artificial boundary method requires much more degrees
of freedom than the inversion method. Let us mention that the cutoff radius R = 10
might be increased, this limiting factor is the cause of the locking observed in Fig. 6
for the absorbing boundary conditions.

Figure 7 shows the profile computed with both methods when w is an ellipse:
each computation involves Pj-elements with 140 degrees of freedom (DOF) (the

-4.4135E-01 4.3904E-01 -4 9523E-01 49721 E-01

L — | | — |
-88154E-01 -1.1500E-03 §7924E-01 -9.9145E-01 9.8598E-04 9.9343E-01

(a) (b)

Fig. 7. Profile obtained for the same number of DOF. (a) Transparent boundary condition method,
(b) Inversion approach.
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solution obtained by inversion has been projected onto a fine mesh for comparison).
It it clear that the inversion method provides a better accuracy for the same
computation cost.

5.2. Transfer and superposition

The profiles computed above have to be mapped onto the grid where v is defined to
build the approximation u,, see (5.1). This has been done via the following automatic
procedure:

w—wf)

(1) For any vertex z of that mesh, compute X = o(*==).

(2) Find the element K of the bounded mesh used for the profile computation and
containing X.

(3) Compute the value W(X) by interpolation in K.

For point (2), a preliminary bucket sort, see Ref. 5, pp. 174—177, is performed to
reduce the number of elements to be considered when finding K.

To compare u, and its zeroth and first order approximations, we need to compute
u, accurately. Figure 8 shows two meshes used to that end, they have been generated
using Triangle Ref. 16. In Fig. 9, we present the differences u, — ug and u, — u; on the
example of two ellipses. The value € = 0.0585 is relatively large for visibility reasons,
but nevertheless the approximation given by the first order approximation u; is much
better than wy. The principal error in u, — ug is mainly concentrated around the
holes, it is partially corrected in u. — u;. We emphasize the fact that, for such values
of £ and « (aw = 0.5), the distance between the two inclusions is 2¢® ~ 0.24 which is
pretty coarse. In this situation, it would be preferable to write the following first order
approximation instead of (5.2)

wpy () = ug () + [Vuo(mg) v, (m ;’35) V(e t) -V, (m _5”3:)] . (5:6)

It appears clearly in Fig. 9 that u;; is a better choice than wu; since the profiles are
more precisely corrected near the inclusions.

(a) (b)
Fig. 8. Some meshes used to compute u,. (a) @ = 0.5 and e = 0.01, (b) « = 0.9 and £ = 0.05.
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-1 2807E-01 1.5138E-01 -1.2807E-01 1.5138E-01

L — | | — |
-26730E-01 1.1B55E-02 28111E-D1 -2 B780E-01 1.1BS5E-02 28111E-01

(a) ue — uq. (b) v — uy.
26231 E-02 1.8203E-02
| — |
-4.8448E-02 -4.0140E-03 4.04206-02

(¢) ue —uyy.

Fig. 9. w. —yy and u, — uy for ¢ = 0.0585 and a = 0.5.

10
Ty,
el
107k —o—lugu g1l i

Error (energy norm)
>

)
@

—_
o
T

_4
10 : :
107" 10° 1072 107

Fig. 10. Energy norms of u, — ugy, u, — u; and u, — uy; for « = 0.2.

In Fig. 10, we present the errors (in the H!(.)-norm) obtained for the three
approximations ug, u; and uy; (in the case where the two inclusions are ellipses, and
a =0.2). The local convergence rates computed as the slopes between two con-
secutive points in Fig. 10 are gathered in Table 1. We recover the expected rate
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Table 1. Local convergence rates for curves in Fig. 10.

Us — Ug Ue — Uy Ue — Uy
1.0348 1.7149 1.9760
1.0357 1.6385 2.0357
1.0333 1.5339 2.0395
1.0300 1.3843 1.8937
1.0265 1.3183 1.8417
1.0231 1.2786 1.8420
1.0198 1.2351 1.6210
1.0175 1.2145 1.4146
1.0152 1.1975 1.1711
1.0129 1.1897 1.0625
1.0113 1.1481 0.6392
1.0091 1.1072 0.5619
1.0086 0.9804 0.3101

1.8
® Numerical estimate of the rate
17+ | = = = Theoretical convergence rate R
'R
4
1.6 é v E
’ AY
e b ® 9 ®
.0 \
)
15 [ B g
’ \
’ AY
4
4 \\
1.4 b \ T
’ AY
4
4 \\
13 y 3 . @ g
4 \
4
4 \‘
121 .’ \ B
’ \
. ‘ A
’, \
1.1 ’. v
AY
. ‘ A
NS s s s s s ‘ s s J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Value of o

Fig. 11. Predicted and estimated convergence rate with respect to a.

1+ a = 1.2 for u, — uy, cf. expansion (2.1), as well as the rate 2 for u, — uy; if € is not
too small, cf. expansion (1.5).

Finally, Fig. 11 plots the estimated rates with respect to the value of a. The results
are in good agreement with the theoretical predictions. Note that this graph has been
obtained for circular holes, where the profile is analytically known, to avoid roundoff
errors due to the profile computations.
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